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The use  of an ampl i tude - s t ab le  powerful  shock wave in a gas  has been proposed  as a high- 
t e m p e r a t u r e  s tandard  of a black body rad ia to r .  In o rde r  to produce  these  waves,  an explo- 
s ive  cha rge  with a cumula t ive  channel is used.  The  emis s ion  f r o m  such a sou rce  has been 
inves t igated o v e r  a wide range  of the s p e c t r u m  including the quartz  u l t rav io le t ,  v is ib le ,  and 
i n f r a r ed  sec t ions .  

In pho tomet ry  technique,  l ight s o u r c e s  us ing an incandescent  object  as  the r ad i a to r  a r e  popular .  One 
example  is the r e f e r e n c e  tube with a tungsten r ibbon or  a uniformly heated cavi ty  with an a p e r t u r e  s imu la -  
ting a black body. The  t e m p e r a t u r e  of these  r a d i a t o r s  usual ly  does not exceed 3000~ while in the invest i -  
gation of ce r t a in  phenomena b r igh tness  t e m p e r a t u r e s  of ~104-10~~ and higher  a r e  encountered.  The g r ea t  
d i f ference  in b r igh tness  of the object  being inves t igated and the compar i son  s tandard  frequent ly  make  it 
ve ry  difficult  to ca l ib ra te  the radia t ion r e c e i v e r s .  The h i g h - t e m p e r a t u r e  s tandard  is sui table for  this .  The 
r e q u i r e m e n t  for  such a s t andard  a r i s e s  f r o m  m e a s u r e m e n t s  in the UV region where,  because  of low br igh t -  
ness ,  incandescent  bodies  in p r ac t i ce  a r e  unsui table .  Quite good r e su l t s  were  given in a t t empts  to adapt  
for  these  pu rposes  an e lec t r i c  d i scharge  in gases .  Thus,  a recent ly  designed pulsed s o u r c e  ~V-39 (1~V- 
45) r ad i a t e s  as  a black body" with a t e m p e r a t u r e  of 41,000~ over  the region k = 200-600 nm [1, 2]. 

Exper imen t  and theory  show [3, 5] that  shock waves in a i r  at  a tmosphe r i c  p r e s s u r e  and t e m p e r a t u r e s  
behind the wave front  10, 000-50,000~ rad ia te  as a b lack  body ove r  an e x t r e m e l y  b road  spec t r a l  range,  
spread ing  into the UV and IR region.  The  p rob lem concerning a shock wave as  a s tandard  of b lack  body 
radia t ion at  high t e m p e r a t u r e s ,  sui table  for  pho tomet r i c  invest igat ions  ove r  a wide spec t r a l  r ange ,a l r eady  
has been r a i s ed  by the authors  (Patent  No. 1,277,550). This  quest ion will be  the subject  of fu r the r  study in 
this paper .  

Product ion of Powerful  Ampl i tude-Stable  Shock Waves.  In o r d e r  to know the b r igh tness  t e m p e r a t u r e  
of a shock wave, using it as  a pulsed radia t ion s tandard ,  it is sufficient to m e a s u r e  the veloci ty  of the wave 
front .  Fo r  example ,  by m e a s u r i n g  the veloci ty  with an SFR-2  pho to r eco rde r  to an accu racy  of =~ 1% and 
r e s o r t i n g  to ca lcula ted  shock adiabats ,  the t e m p e r a t u r e  can be  de te rmined  with an accu racy  not worse  than 
• 3 ~ .  In p rac t i ce ,  however ,  it is p r e f e r a b l e  to have a sou rce  with a p rev ious ly  known br igh tness  t e m p e r a -  
tu re  which is constant  during a ce r t a in  t ime  in te rva l .  In o r d e r  to sa t i s fy  these  r equ i r emen t s ,  an explos ive  
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Fig.  1. Shaped cha rge  and tube 
a t tachment .  

cha rge  with a cumula t ive  channel is  used to obtain s t rong shock 
~ t v e s  (Fig. 1.). The cha rge  is  cas t  f r o m  TG 40/60 (40~ TNT and 
60 % hexogen). 

Exper iments  showed that  a f te r  initiation of the charge  and 
e m e r g e n c e  of the detonation in the head of the channel,  the explo-  
sion products  co l lapse  and f o r m  a se t  in the channel leading the 
detonation f ront .  The  veloci ty  of the je t  i n c r e a s e s  and the veloci ty  
of the shock wave in the channel i n c r e a s e s  correspondingly~ In 
t r a v e r s i n g  a path ~ 8d, the shock wave gains m a x i m u m  veloci ty  
which is mainta ined during fu r the r  motion~ F igu re  2 shows a 
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Fig. 2. Photochronogram of shock wave and jet 
in tube (the slit of the photorecorder  is paral lel  
to the tube axis). 

photochromogram of the shock wave and jet in a 
glass  tube used as the continuation of the channel (we 
used a shortened charge  with l= 5d in the experiment,  
which made it possible to observe  in the tube the a c -  
celerat ion of the jet  and the shock wave up to maxi-  
mum velocity). Excitation of the shock wave on e m e r -  
gence of the detonation at the head of the channel, sub- 
sequent collapse of the combustion products and the 
formation of an ampl i tude-s table  s trong shock wave 
a re  recognizable  on the photochronogram shown in 
Fig. 3. 

It may be expected that with the detonation of a 
sufficiently long charge  the length of the jet and col-  

umn of shock-heated gas leads to their  intensive re tardat ion in the channel. Contact between the products 
of the jet  and the shock-heated gas can induce disintegrat ion or  detonation of the explosive. In some ex- 
per iments  the length of the channel reached 30d, however the amplitude stabili ty of the shock wave was 
maintained. Obviously, when l ~ 30d fr ict ion and interact ion with the explosive in the channel by motion of 
the shock wave have no significant effect. According to [6], these effects appear  when l ~ 100d. 

The magnitude of the stable shock wave velocity depends on the rat io of the d iameters  of channel and 
charge.  When this rat io increases  the velocity increases ,  although when D/d ~ 4 this inc rease  is slowed 
down strongly.  In experiments  with charges  having a channel d iameter  varying f rom 3-18 ram, the geome-  
t r ica l  s imi lar i ty  of motion of the shock wave in the channel was verified. It was found that the s imi lar i ty  
and stability of the shock wave a re  disrupted in the case  of thin channel walls when (D -- d) ~ 10 mmo As a 
resu l t  of this, the shock wave velocity is reduced. The instants distinguished can be explained by the prox-  
imity of the wall thickness to the cr i t ical  detonation diameter  of the explosive. Experiments  with charges  
of cast  TNT fur ther  conf i rm this, for which the deviation f rom s imi lar i ty  was manifested more  strongly.  
Starting f rom the resul ts  given above, a charge  with the following dimensions is taken for investigating the 
radiat ion of a stable shock wave: d = 8 ram, D. = 30 ram, l = 120 ram, L = 150 ram, depth below detonator 
5 = 10 mm and charge weight 168 g. Careful measurements  of the velocity of the stable shock wave in a ir ,  
formed by the detonation of this charge,  give 13.6 • 0.1 km/ sec .  If we use the shock adiabat of a i r  f rom 
[7], then the measured  value of the velocity cor responds  to a gas t empera tu re  behind the shock wave front 
of 24,000 * 700~K. 

With the chosen charge  dimensions,  observat ion inaccurac ies  have little effect on the velocity of the 
stabil ized shock wave, because  when l > 8d the maximum velocity is establ ished in the channel, the value 
of which when D/d h 4 depends weakly on the d iameters  d and D. F r o m  these same considerat ions ,  and 
also for an increase  of the shock wave tempera ture ,  the choice of the l a rges t  possible rat io of D/d is con- 
f i rmed,  if the increase  of the charge  weight plays no part .  Thus, for charges  with D = 60 mm (D/d = 7.5) 
a velocity of 16.7 k m / s e c  and a t empera tu re  of 32,000~ a re  measured ;  however,  the charge  weight was 
increased  by a factor  of 4. 

Measurement  of the Brightness Tempera tu re .  The br ightness  t empera tu re  was determined f rom 
photometr ic  compar i son  of the optical densit ies produced on a photographic film with sl i t  scanning of the 
shock wave and a brightness etalon on the SFR-2 instrument.  The UV ( kg f f  = 330 nm), blue ( k e f f  = 422 
nm) and yellow ( k e f f  = 560 nm) regions of the spec t rum were separa ted  with color  f i l ters ,  the effective 
t r ansmiss ion  waveIength of which )~eff was found by taking account of the photoactinic cor rec t ion .  A 
pulsed @V-39 source  [2] was used as the br ightness  standard.  

Measurements  of the br ightness  t empera tu re  were ca r r i ed  out in individual sections of the spec t rum 
with spect ra l  analysis  of the radiation. The t ime resolved UV and visible radiat ions (k = 220-700 nm) of 
the shock wave were recorded  with a h igh- t r ansmiss ion  spectrophotochronograph S P - l l l .  A photochrono- 
graph SFR-2 with spect ra l  at tachments  SP-77 and SP-78 was also used in the visible region. The spec t ra l  
br ightness of the t empera tu re  was measured  in the range ~ = 220-600 nm by photometr ic  compar i son  of the 
optical densit ies of the spec t rophotochronograms of the shock wave and of the ~V-39 source .  The optical 
density s tandards neces sa ry  for  construct ing the charac te r i s t i c  curve of the photosensit ive layer  were 
sensi t ized by exposure to the ]~V-39 source  (for this purpose,  step wedges [4, 5] were positioned at the 
focal a r c s  of the SFR-2 and S P - l l l  instruments) .  The spec t ra l  resolution,  using the SP-111 with a 
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Fig. 3 Fig. 4 Fig. 5 

Fig. 3. Photochronogra  m of the luminance of a shock wave in the channel (slit of photorecorder  
perpendicular  to the tube axis)�9 1) Stable shock wave, 2) emergence  of detonation at head of 
channel, 3) d ispersa l  of shock-heated gas f rom the tube. 

Fig. 4. Spectrophotochronogram of the br ightness  of a shock wave in a channel ( k = 390-700 
rim), obtained on the SFR-2 inst rument  with SP-77 attachment~ 1) Exit of detonation at the end 
of the channel, 2) stable shock wave, 3) d ispers ion of shock-heated gas f rom the tube; the 
broad bands in the spec t rum are  due to the spect ra l  sensit ivity of the photoemulsion. 

Fig. 5. Photochronogram of luminance of shock waves giving a rec tangular - shaped  radiation 
pulse�9 

detachable grading of 1200 l ines /mm was 0.7 A�9 Spectrographs Q-12 and ST~-I  were  used in attempts to 
o 

detect  sharp lines in the shock wave emiss ion  spect rum;  these gave a resolut ion of 0.1 A. 

The IR and visible rad ia t ionwere  investigated by means of photoelectr ic  sensor s  In the yellow (k .~ 
�9 e : r  

= 560 nm), red  (kef  f = 660 nm) and near  infrared (her f = 778 nm) sections of the spect rum,  separated bse~ 
color  f i l ters ,  the r'gdiation was recorded  by a FEU-Z2 photomultiplier  The IR radiation in the section 
ke f  f = 1300 nm was recorded  by an FD-GI germanium- ind ium photodiode. Signals f rom the FEU-22 and the 
FD-GI were fed to OK-33 and OK-17M osci l loscopes .  

An SI 10-300 tube was used as the br ightness  s tandard in the photoelectr ic  measurements .  The 
br ightness  t empera tu re  of a tungsten ribbon in the region h e f  t = 660 nm was measured  by means of an 
~OP-51 precis ion optical py romete r  and in the experiment  it was 2800 • 10~ F r o m  the resul ts  of these 
measurements  and the table values of the spec t ra l  blackness  of incandescent tungsten the br ightness  t em-  
pera ture  of the ribbon in other par ts  of the spec t rum was determined.  

In the experiments ,  the objective was to project  the ribbon of the tube or the shock wave onto a sc reen  
so that their  image completely filled an opening in the screen .  Behind the sc reen  a f ros ted-g lass  color  
f i l ter  and photoelectr ic  sensor  were a r ranged  in success ion.  The la rge  difference in br ightness  between 
the shock wave and the tube ribbon was compensated by the setting of the diaphragm objective; in this case,  
the electronic equipment r ecorded  only coincidence of the signal amplitudes and the br ightness  t empera -  
ture  was determined by measur ing  the diaphragm diameter  at the compensator �9 The light signal f rom the 
s t r ip  tube was modulated with a rotating disc with openings and it was photographed f rom an osci l loscope 

screen.  

The photographic and photoelectr ic  procedures  used provided a t ime resolut ion of 10 -7 sec.  

Analysis  of Results.  The shape of the radiation pulse on detonation of an explosive charge with a 
cumulative channel can be judged f r o m F i g s .  3 and 4. The luminescence t ime of the stable shock wave in the 
charge  channel was 5 psec. If a tube of cardboard  or  other  dense mater ia l ,  not g rea te r  than 160 mm in 
length, was attached to the charge, the shock wave propagated along it without significant damping and its 
luminescence t ime was extended to 17 #sec. 

Sometimes it is convenient to have a rec tangular  cal ibrat ion pulse. The t ime of format ion of the 
stable shock wave is shortened f rom 5 to 2 #sec if a long charge  (L = 180 mm) is used, in which the bottom 
of the channel is not plane as in Fig. 1, but is in the fo rm of a conical r e ce s s  (Fig. 5, lower t race) .  Thelead-  
ing edge of the radiation pulse can be shortened to 0.1 #sec by cutting off that par t  of the channel where the 
stable shock wave is established with an opaque fi lm (for example, carbon paper). The lat ter  is destroyed 
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Fig~ 6. Osci l logram of shock 

wave luminance in the IR re -  
gion, ke~ ~ = 1300 nm with cut-  
off of the radiation pulse edges 
(frequency of m a r k e r s ,  10 

/~sec). 

by the shock wave without introducing noticeable per turbat ions (up- 
per  t r ace  in Fig. 5 and osc i l logram in Fig. 6). The trai l ing edge of 
the pulse is cut off a f t e r ~ l  psec  by the cracking of the quartz  or 
glass  window mounted on the end of the attached tube by the shock 
wave (Figs. 5 and 6).* 

The emiss ion spec t rum of the shock wave is continuous. Lines 
were absent even on spec t rog rams  with a resolut ion of 0.1 /~. Est i-  
mates  of the linewidth under experimental  conditions gave ~1 00 to 
1 .~. The minimum width certainly is l imited by Doppler broadening 
to ~0.1 ~. The absence of lines, therefore ,  is due to the nature of 
the emiss ion f rom the shock wave and not to the capabilit ies of the 
procedure .  This type of spec t rum approximates  to the shock wave 
f rom incandescent bodies. 

The following values of the br ightness  t empera tu re  of the 
stable shock wave were measured  in different parts  of the spec t rum:  

~., nm 230 330 432 560 600 660 778 i300 

T.t0-8~ 24.5 23.5 23.5 24.6 25.2 -- -- --(fromspectrophomochromogram) 

T-t0 -2 ~ -- 23.0 23.0 24.0 . . . .  (from photochronogram) 

T.t0-3~ -- -- -- 23.0 -- 22.6 23.0 25.1 (photoelectric measurements) 

Tempera tu re  pulsations with t ime and over  the channel c r o s s - s e c t i o n  did not exceed • 1000*K. These  
same limits include the t empera tu re  spread f rom experiment  to experiment.  For  charges  prepared f rom 
50/50 TNT/hexogen,  the br ightness  t empera tu re  is 1000~ lower. By avoiding inhomogeneities when cast ing 
the charge  and by initiating the charge  prec ise ly  along the axis, the pulsation could be reduced to • 400~ 
The constancy of the br ightness  t empera tu re  with motion of the shock wave, when the geomet r ica l  thickness 
of the heated gas increases ,  conf i rms  its large optical thickness.  

If a i r  is replaced by some other  gas, the t empera tu re  can be increased  and shifted into the region of 
the vacuum ultraviolet .  If the channel is filled with neon, the t empera tu re  increases  to 32,000~ In argon 
the shock wave t empera tu re  in blue light was 40,000| although in argon and the heavier  inert  gases  non- 
s ta t ionary screening and instability of the plane shock front [4] complicate  the production of stable rad ia-  
tion pulses. 

The experimental  resu l t s  obtained, supplementing the previous investigations [4, 5],confirm the con- 
clusions that shockwaves in the specified range of amplitudes radiate as an absolutely black body. Shock 
waves formed by the detonation of a charge  with a cumulation channel were found to be a source  of compar -  
atively stable radiation pulses.  The sourc.e descr ibed  here  was used by the authors as a br ightness  stand- 
ard  for investigating the radiation proper t ies  of shockwaves in inert  gases  [8]~ The small  mass  and dimen- 
sions, the nondependence on mains  e lectr ic i ty  and simplicity of manufacture permi t  the source  to be used 
not only in labora tor ies  (bomb-chambers)  but also under field (test site) conditions. 

The authors a re  grateful  to Yu. A. Zatsepin and So V. Kondratlev for ass i s tance  in the experiments .  
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